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We study numerically the dynamics of a scroll wave in a three-dimensional �3D� excitable medium in the
presence of substantial meandering of the corresponding 2D spiral wave in the Aliev-Panfilov model. We
identify three types of dynamics of the scroll wave filament—quasi-2D, periodic, and aperiodic meandering—
and we study their dependence on parameter settings and thickness of the medium.
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Scroll waves are three-dimensional �3D� vortices which
are extensions of the well-known spiral waves that occur in a
variety of excitable media. Scroll waves have been observed
in the Belousov-Zhabotinski �BZ� chemical reaction �1,2�, in
the slug phase of the life cycle of slime molds �3� and in the
ventricles of the heart during cardiac arrhythmias �4,5�. Nu-
merous modeling studies of scroll waves have been per-
formed using analytical and numerical methods. The impor-
tance of scroll waves for our understanding of the behavior
of excitable media has been consistently emphasized in the
literature �6�.

A scroll wave is usually characterized by its filament �7�,
which is an extension into three dimensions of the notion of
the core of the spiral wave. In general, the dynamics of a
filament in 3D is governed by its curvature, twist �8,9�, and
by the anisotropy of the excitable medium �6,10,11�. Math-
ematically, drifts occur as a result of a convective term in the
Laplacian in a coordinate system with an axis directed along
the filament and can be effectively studied using singular
perturbation theory �9�. The curvature-induced drift of the
filament changes the filament length. This property of the
filament is often regarded as the filament tension �12�, which
can be positive or negative �8�. If the tension is negative, the
filament increases in length, leading to instability, which can
cause the multiplication of scrolls �12,13�. If the tension of
the filament is positive, the filament tends to become shorter,
which results either in the collapse of scroll waves with a
closed �circular� filament or in the stabilization of a straight
filament between two opposite boundaries in a uniform me-
dium �14�. Filament behavior is highly important for the sys-
tem in which scroll waves occur. For example, it is a widely
accepted hypothesis that different orientations of filaments in
the heart and different types of their dynamics determine the
type of cardiac arrhythmia and its possible deterioration into
fibrillation in the ventricles of the heart �15,16�.

Until recently, the dynamics of filaments was mainly stud-
ied for those parameters of an excitable medium that show
stable rotation of a 2D spiral wave, i.e., for so-called circular
cores. However, the assumption of a circular core does not
hold for several important practical cases: spiral waves in a
BZ reaction �17� and spiral waves in models of cardiac tissue

�18� both show pronounced meandering �19�. In this article,
we study filament dynamics in the presence of scroll wave
meandering in a model for cardiac tissue �20�.

MODEL AND METHODS OF COMPUTATION

The excitable medium was described by the Aliev-
Panfilov model �20�,

�e/�t = �2e − ke�e − a��e − 1� − er , �1�

�r/�t = �� + ��1r�/��2 + e���− r − ke�e − b − 1�� . �2�

Here the variable e stands for the transmembrane potential
and variable r represents the conductance of the slow inward
current. The function −ke�e−a��e−1� in Eq. �1� determines
the fast processes, such as the initiation of the upstroke of the
action potential. The dynamics of the recovery phase of the
action potential is determined by the time course of the vari-
able r, mainly by the function ��+ ��1r� / ��2+e��. The par-
ticular parameters in this model do not have a clear physi-
ological meaning but are adjusted to reproduce the key
characteristics of cardiac tissue, such as the shape of the
action potential, refractoriness, and the restitution of action
potential duration. The values of the parameters used in this
investigation are �2=1.3, k=8, �=0.01, b=0.1, �1=0.2; pa-
rameter a was varied between 0.12 and 0.18. Decreasing of a
increases the excitability of the cell and prolongs the dura-
tion of the action potential and the refractory period.

For numerical computations we used the explicit Euler
method with Neumann boundary conditions, and a rectangu-
lar grid containing up to 128�128�128 elements. To ini-
tiate the first scroll, we used initial data corresponding to a
3D broken wave front. Numerical integration was performed
with a space step hs=0.6 and a time step ht=0.03 �21�. The
dimensioned values of the time and space steps in this case
were calculated on the basis of the properties of spiral waves
in cardiac tissue �20� in our case these were ht=0.077 ms,
hz=0.1 mm, and hx=hy=0.3 mm. The spiral wave core and
the scroll wave filament were traced using an algorithm pro-
posed by �22�, by detecting the tip points as the intersection
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point of an isopotential line �in our case 0.5� and the
dV /dt=0 line.

RESULTS

Figure 1 shows the evolution of meandering patterns of
2D spiral waves for different values of the parameter a of
model �1� and �2�. We see that for a=0.12 we have an almost
circular core, for a=0.15 the spiral tip starts to meander
slightly, and for a=0.18 the spiral wave meanders substan-
tially.

We studied the dynamics of a scroll wave for the same
parameter values, by extending our computations from the
128�128 plane to the 3D domain. In the first series of com-
putations, we used the initial conditions translationally in-
variant in the third �Z� direction. For that we copied the same
2D spiral wave pattern to all layers of our numerical grid.
The meandering patterns in all Z sections of the medium in
this case were the same as in Fig. 1, and the filament re-
mained a straight line with a length of 12.7 mm �thickness of
the medium�. Because of the similarity of this process with
2D meandering, we will call it quasi-2D meandering. In or-
der to study the stability of this regime in 3D, we performed
a series of computations in which we shifted the whole 2D
spiral wave for each �z� slice of the system in the x direction
as xnew=xold+s�sin��� /12.7�z�, with s=0.5 mm �estimated
5% disturbance of the filament length�, and we studied
whether the scroll wave filament returns to its unperturbed
state with the minimal length. To represent this, we plotted
the length of the filament in the course of time for the three
different meandering regimes �Fig. 2�. We found that for a

=0.12 �corresponding 2D spiral has a circular core, Fig. 2 the
dashed line�, the filament length returns to the minimal
length within 100 ms, indicating that in this case we have a
straight filament orthogonal to the top and the bottom bound-
aries of the domain. Thus in this case the quasi-2D meander-
ing of the scroll wave is stable. However, even in the case of
slight meander of the spiral wave �a=0.15, gray line�, the
filament length did not return to the thickness of the medium
and after some transient period of time the filament length
oscillated between the values of L=12.8 mm and L
=13.6 mm. For strong meander of the spiral wave �a=0.18,
solid line�, we also see changes in the filament length, but
they are more complex and have a larger amplitude �between
L=13.7 mm and L=15.2 mm�. Note that, in all these cases
the filament tension is positive: the computed effective dif-
fusion coefficient �D� relating filament curvature �k� and
contraction velocity �Vc=Dk� was D=−0.29 mm2/ms for a
=0.12, D=−0.625 mm2/ms for a=0.15, and D
=−0.841 mm2/ms for a=0.18. Furthermore, the effects of
3D filament meandering did not depend on the initial condi-
tions. We performed simulations for initial disturbances with
an amplitude of s=0.3 mm and found qualitatively similar
behaviors �not shown�. We have also performed computa-
tions for the strong meandering case with periodic boundary
conditions in the top and bottom of the medium �the upper
gray line�. We found that although the amplitude of the fila-
ment length oscillations was slightly less than for the Neu-
mann boundary conditions, the complex aperiodic dynamics
remained.

It can be seen that for a=0.15 and a=0.18, the dynamics
of the filament length has two components: a high-frequency
component with an amplitude of about 5% of the total fila-
ment length and frequency close to the average frequency of
the spiral wave, and a low-frequency component on a much
slower scale. The detailed patterns of filament meandering
for a=0.18 are shown in Fig. 3. We see that initially the
filament is only a slightly curved line �the left figure� and the
meandering at each level is similar to the meandering of the
2D spiral wave in Fig. 1�c�. However, in the course of time,
the filament shape becomes more complex, and the meander-
ing patterns at each level become different from each other
substantially �Figs. 3�b� and 3�c��. As a result, we obtain a
complex aperiodic change of the filament length as shown in
Fig. 2. We will discuss the dynamics of the filament and the
nature of the fast and slow components after describing an-
other series of computations for this case �a=0.18� in which
we varied the thickness of the medium.

FIG. 1. Spiral wave and its core �the white lines� for a=0.12,
a=0.15, and a=0.18. Computations were performed in a 2D excit-
able medium consisting of 128�128 elements. The light gray area
represents the excited state of the tissue �e�0.6� and intermediate
shading from gray to black shows different levels of recovery.

FIG. 2. �Color online� Filament length vs time. The parameter
values are a=0.18 �black solid line�, a=0.18 with the periodic
boundary conditions �upper gray solid line�, a=0.15 �lower gray
solid line�, and a=0.12 �long dashed line�. Computations in the
medium consist of 128�128�128 elements with the initially sinu-
soidally perturbed straight filament with the Neumann boundary
conditions �except the upper gray line�.

FIG. 3. Filament dynamics at a=0.18 at t=0 s �the left�, t=1 s
�the middle�, and t=3 s �the right� in the course of time.
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We found that the 3D meandering pattern, in this case,
crucially depends on medium thickness �Fig. 4�a��. For small
thickness �2.5 mm, dashed line�, the filament length �L� ap-
proaches the thickness of the medium �Lo�, which indicates
that the filament is straight and the meandering patterns in all
Z sections are the same. Thus in this case we have a
quasi-2D meandering. For an intermediate thickness
�3.1 mm, gray line� we see that the filament length increases
by approximately 20%, but meandering is periodic �the slow
component of the filament length change is absent�. For a
thick excitable medium �solid line, Fig. 4�a�� we have the
aperiodic meandering described earlier �Figs. 2 and 3�. To
represent these changes, we plotted the maximal, minimal,
and average filament length of established meandering pat-
terns for 14 different thicknesses of the medium �Fig. 5�a��.
We see that for medium thickness below 2.5 mm, we have a
quasi-2D meandering regime. For thicknesses between 2.6
and 3.2 mm, we have periodic meandering, which is charac-
terized by an increase in the average filament length and a
relatively small difference between the minimal and maximal
length. For thicknesses above 3.2 mm, filament meandering
becomes aperiodic, which is characterized by large variations
of the filament length, however the average filament length
does not differ much from that for the periodic meandering
regime. Similar changes occur if we fix the thicknesses of the
medium and increase the value of parameter a �Fig. 5�b��.
We see the gradual change in the amplitude of filament me-
andering, which becomes more pronounced and aperiodic for
a�0.15.

The typical meandering pattern for the periodic regime is
shown in Fig. 4�b�. We see that the core patterns in the dif-
ferent sections do not change in the course of time, however

the core shape depends substantially on the location of the
section. As a result, we observe periodic changes in filament
length that occur due to different rotation patterns of the
scroll.

Now we can revisit the filament dynamics for the aperi-
odic regime shown in Fig. 3. The high-frequency component
here, as in Fig. 4�b�, is determined by the difference in the
meandering patterns at different sections of the medium.
However, there is another slow process on top of this peri-
odic meandering. The result of this process is a substantial
change of the filament shape. The increase in filament length
usually starts as a bump, which occurs at a point around
one-third of the way along the filament. This bump slowly
shifts to the boundary of the medium and disappears there.
As a result, the length of the filament decreases and reverts
almost to its minimum value. In general, this slow dynamics
is quite complex and shows substantial variations. For ex-
ample, two bumps can develop on one filament or one bump
can disappear and be replaced by another one, etc.

Figure 5 also suggests that the aperiodic filament dynam-
ics occurs as a result of two subsequent �supercritical� bifur-
cations. Taking into account that the periodic meandering
regime is a quasiperiodic motion, its bifurcation into an ape-
riodic regime may result in the onset of chaos via the quasi-
periodic route �23�. However, due to computer resource limi-
tations, we did not characterize how chaotic the pattern is
during the aperiodic meandering.

DISCUSSION

In this paper we find three regimes of meandering of a
scroll wave filament: quasi-2D, periodic, and aperiodic me-
andering. The periodic meandering is characterized by differ-
ent meandering amplitudes at different cross sections of the
medium and is similar to the meandering described in
�24,25�. The aperiodic regime has more complex dynamics
and is characterized by substantial buckling of the filament.
The quasi-2D meandering is stable only in media of small
thickness, or for a circular core of the corresponding 2D
spiral waves. Note also that, as shown in �24,25�, for some
parameter values meandering in 3D can occur earlier than in
2D.

Filament instability was also studied numerically in an-
other FitzHugh-Nagumo-type model �26�. It was shown that
the meandering can result in instability whereby the filament
acquires a helical shape. However, in that regime the average
length of the filament monotonously increased with time and
exceeded the minimum length by only 1%, whereas in our
case the average filament length was not monotonically in-
creasing but instead showed substantial oscillations �of up to
20%�. The high-frequency component observed in �26� was
similar to that observed in our paper.

Real cardiac tissue is nonuniformly anisotropic, and such
an anisotropy can substantially affect the dynamics of scroll
waves and cause the filament to acquire nonstraight shapes
�6,11�. Note, however, that analysis and numerical modeling
in �6,11� were performed for the case of a circular core of
spiral waves. Our results suggest that these stationary fila-
ment configurations may not hold for a meandering spiral
where the filament can undergo complex motion. It is diffi-

FIG. 4. �Color online� �a� Relative filament length vs time for
a=0.18 in the medium of the thickness of 12.7 mm �the solid line�,
3.1 mm �the gray line�, and 2.5 mm �the dashed line�. The relative
filament length is defined as the filament length �L� divided by the
thickness of the medium �Lo�. �b� Filament meandering for the me-
dium which is 3.1 mm thick.

FIG. 5. �a� The maximal, minimal �solid lines�, and the average
�the gray line� relative filament length during the time from 4 s until
8 s vs thickness of excitable medium. �b� Same vs parameter a for
the medium which is 12.7 mm thick.
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cult to say whether the same stable configurations will be
found for the time-averaged filament position, since the ap-
proach proposed in �6,11,27� may still work in the average
sense, or that the asynchronous spiral meander and its inter-
action with rotational anisotropy will result in different final
averaged configurations.

Although this work was carried out using a simplified
model for cardiac tissue, we expect that the conclusions of
this paper will be confirmed when more detailed models of
cardiac tissue are used. Our expectation is based on the fact
that spiral waves in ionic models of cardiac tissue meander
substantially �18�, which is likely to lead to 3D instabilities.

In conclusion, we found the following three dynamics of
scroll waves in 3D excitable media: quasi-2D, periodic, and
aperiodic meandering. These regimes occur in the presence
of substantial meandering of the corresponding 2D spiral
waves.
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